Exam II: MTH 111, Spring 2018

$$
\begin{array}{r}
\text { Ayman Badawi } \\
\text { Points }
\end{array}=\frac{62}{62}
$$

QUESTION 1. (12 points) Find y^{\prime} and DO NOT SIMPLIFY
(i) $y=4 e^{\left(2 x^{2}-4 x\right)}+2 x-5$
$y^{\prime}=4 e^{\left(2 x^{2}-4 x\right)} \cdot(4 x-4)+2$
(ii) $y=\left(5 x^{2}+3 x\right) \sqrt{5 x+10}$

$$
\begin{aligned}
& y=\left(5 x^{2}+3\right)(5 x+10)^{1 / 2} \\
& y^{\prime}=\left[\left(5 x^{2}+3\right) \cdot \frac{1}{2}(5 x+10) \cdot 5\right]+\left[(5 x+10)^{1 / 2} \cdot(10 x)\right]
\end{aligned}
$$

(iii) $y=\ln \left[\left(2 x^{5}+4 x^{3}-3 x\right)(2 x+7)^{5}\right]$
$y=\ln \left(2 x^{5}+4 x^{3}-3 x\right)+\ln (2 x+7)^{5}$

$$
y^{\prime}=\frac{10 x^{4}+12 x^{2}-3}{2 x^{5}+4 x^{3}-3 x}+\frac{10}{2 x+7}
$$

(iv) $y=3\left(e^{(3 x+2)}+7 x^{4}+5 x+2\right)^{4}$

$$
y^{\prime}=12\left(e^{(3 x+2)}+7 x^{4}+5 x+2\right)^{3} \cdot\left(3 e^{(3 x+2)}+28 x^{3}+5\right)
$$

QUESTION 2. (i) (6 points) Does the line $L: x=2 t+1, y=5 t-1, z=-2 t+3$ lie entirely inside the plane $x+2 y+z=23$? If not, does it intersect the plane? If yes, then find the intersection point.

$$
\left.L: \quad \begin{array}{l}
x=2 t+1 \\
y=5 t-1 \\
z=-2 t+3
\end{array}\right\} t \in R
$$

$$
\begin{aligned}
& P \Rightarrow x+2 y+z=23 \quad \begin{array}{c}
\text { plane but intersects it at } \\
(5.2,9.5 .-1.2)
\end{array} \\
& P(L) \Rightarrow(2 t+1)+2(5 t-1)+(-2 t+3)=23 \in(1) \\
& 2 t+1+10 t-2-2 t+3=23 \\
& 10 t+2=23 \\
& 10 t=21 \\
& t=21 / 10 \\
& =2.1
\end{aligned}
$$

it doesnt lie intierly on the

$$
\begin{aligned}
& x=2(2.1)+1=5.2 \\
&2) \rightarrow \begin{array}{c}
y \\
\end{array}=5(2.1)-1=9.5 \\
& z=-2(2.1)+3=-1.2 \\
& \mathbb{Q}=(5.2,9.5,-1.2)
\end{aligned}
$$

the point of intersection is $(5.2,4.5,-1.2)$ e (3)
(ii) (4 points) Given $N=<-2,3,2>$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P. Find the equation of the plane P.

$$
\begin{aligned}
& N_{x}\left(x-P_{x}\right)+N_{y}\left(y-P_{y}\right)+N_{z}\left(z-P_{z}\right)=0 \\
& -2(x+1)+3(y-4)+2(z-2)=0 \Leftrightarrow \text { plane. }
\end{aligned}
$$

(iii) (4 points) Find the distance between $Q=(10,10,33)$ and the plane $P:-2 x+2 y-5 z=21$.

$$
\begin{aligned}
& \text { Find the distance between } Q=(10,10,33) \text { and the plane } P:-2 x+2 y-5 z=21 \\
& D=\frac{|P(0)|}{|N|} \frac{|-2(10)+2(10)-5(33)-2| \mid}{\sqrt{4+4+25}}=\frac{\mid 86}{\sqrt{33}} \text { units. }
\end{aligned}
$$

(iv) (6 points) The two planes $P_{1}: x+4 y+z=10$ and $P_{2}:-x+2 y-z=8$ intersects in a line L. Find a parametric equations of L.

$$
\begin{gathered}
N_{1} \times N_{2}=D \\
N_{i}=\langle 1,4,1\rangle \\
N_{2}=\langle-1,2,-1\rangle
\end{gathered}
$$

$$
i \quad j \quad k
$$

$$
-1 \quad 2-1
$$

$$
(-4-2) i-(-1+1) j+(2+4) k
$$

(1) $\rightarrow D=\langle-6,0,6\rangle$
let $z=0$

$$
\begin{array}{rl}
-x+2 y=8 & x=-2 \\
x+4 y=10 & y=3 \\
& z=0
\end{array}
$$

(v) (4 points) Can we draw the vector $V=<1,-2,-6>$ inside $P: 5 x+7 y-3 z=19$? explain
$V \cdot N$ must $=0$
$\left.\begin{aligned} & \langle 1,-2,-6\rangle \\ & \langle 5,7,-3\rangle\end{aligned} \right\rvert\, \cup \cdot N=5+-14+18=9$
\therefore No you cannot draw V on the plane because the not product of v and the Normal is not
QUESTION 3. (7 points) Let $f(x)=e^{\left(x^{2}+2 x+1\right)}+3$.
(i) For what values of x does $f(x)$ increase?

$$
\begin{align*}
& f^{\prime}(x)=e^{\left(x^{2}+2 x+1\right)} \cdot(2 x+2) \tag{2}\\
& e^{\left(x^{2}+2 x+1\right)} \cdot(2 x+2)=0
\end{align*}
$$

Now $\mathrm{e}^{\wedge}\left\{\mathrm{x}^{\wedge} 2+2 \mathrm{x}+1\right\}=0$ or $(2 x+2)=0$
Note $e^{\wedge}\{$ anything $\}$ is never zero. Hence $2 x+2=0$. Thus $x=-1$.

$$
\begin{aligned}
& f^{\prime}(-2)=- \\
& f^{\prime}(0)=+
\end{aligned}
$$

$$
\begin{equation*}
\therefore f(x) \text { increases from } \tag{3}
\end{equation*}
$$

$$
(-1,+\infty)
$$

(ii) For what values of x does $f(x)$ decrease?

$$
f(x) \text { is decreasing from }(-\infty,-1)
$$

(iii) Find all local minimum, maximum points of $f(x)$ (just find the x-values where local min. and local max exist).
[No local or absolute maximum]
[local and absolve minimum at $x=-1$ point $(-1,4)$

$$
f(-1)=4
$$

(iv) Roughly, sketch the graph of $f(x)$.

QUESTION 4. (5 points) Let $f(x)=\ln (5 x-4)+4$. Find the equation of the tangent line to the curve of $f(x)$ at $x=1$.

$$
\begin{aligned}
f(1) & =\ln (5-4)+4 \\
& =4 \\
\text { point } & =(1,4) \\
f^{\prime}(x) & =\frac{5}{5 x-4}
\end{aligned}
$$

(1) $\rightarrow f^{\prime}(1)=m=\frac{5}{1}$

$$
\begin{aligned}
y & =5 x+b \\
4 & =5(1)+b \\
b & =4-5 \\
& =-1
\end{aligned}
$$

(2) $\rightarrow \begin{array}{r}b=4-5 \\ =-1\end{array}$
(3) $\rightarrow y=5 x-1$ is the equation of the QUESTION 5. (7 points) Given H and F. Find a point Q on the line $x=12$ such that $|H Q|+|F Q|$ is minimum.

QUESTION 6. (7 points) Consider the following picture. Find $|A B|$ and \downarrow so that the area is MAXIMUM.

The carve is $y=-x^{2}$,

$$
A=|B D||A B|
$$

$$
\text { (1) } \rightarrow A=\left[-a^{2}-(-27)\right] \cdot 2 a
$$

$$
A=\left(-3^{2}+27\right)(6)
$$

$$
=108 \text { units }^{2}
$$

$$
|A B|=2 a
$$

$$
=6 \text { units }
$$

$$
|B D|=\left(-a^{2}+27\right)
$$

$$
=18 \text { units }
$$

Faculty information
(2) $\rightarrow A^{\prime \prime}(3)=-\therefore \max \operatorname{N}$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadari@aus.edu, wหr.ayman-badäri.com

